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Homoclinic Orbits in Reversible Systems II: Multi-bumps

and Saddle-centres

A.R. Champneys
Department of Engineering Mathematics, University of Bristol, UK.

This article extends a review in [9] of the theory and application of homoclinic
orbits to equilibria in even-order, time-reversible systems of autonomous ordinary
differential equations, either Hamiltonian or not. Recent results in two directions
are surveyed. First, a heteroclinic connection between a saddle-focus equilibrium
and a periodic orbit is shown to arise from a certain codimension-two local
bifurcation; a degenerate Hamiltonian-Hopf bifurcation. Under a transversality
hypothesis, perturbation from normal form causes this isolated solution to break
into a snaking bifurcation curve under which a primary homoclinic becomes a
multi-bump with arbitrarily many bumps. Taking as a model a fourth-order
equation arising in many contexts, the snaking is terminated by the existence
of a heteroclinic connection to an equilibrium. Second, multi-bump homoclinic
orbits are considered in the case where the equilibrium is a four-dimensional
saddle-centre (having two real and two imaginary eigenvalues). If the system
is Hamiltonian, then it is known that a sign condition determines whether or
not cascades of multi-bumps accumulate on the parameter values of a primary
homoclinic solution. For non-Hamiltonian reversible systems cascades always
occur, albeit from one sign of parameter perturbation only. Finally, aided by
numerical methods, possible applications are considered to localised cylindrical
shell buckling and to a generalised massive Thirring model arising in nonlinear
optics.

1. Introduction

This paper is illustrative of some of the topics discussed at the workshop on
Multi-bump Solutions on 6–9th October 1997 as part of the programme at the
Lorenz Centre on Dynamical Systems and Pattern Formation. Rather than a
summary of all aspects of the meeting, this paper reflects the interests of the
author on multi-bump homoclinic (and heteroclinic) orbits in Hamiltonian and
reversible systems. The focus of the material here will be partly survey, partly
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new analysis (presented in detail elsewhere) and partly numerical computa-
tions showing how the theory applies in applications. In particular we shall
extend the review in [9] on homoclinic orbits to equilibria in even-dimensional,
time-reversible systems of autonomous ordinary differential equations (ODEs),
specifically by providing answers to two of the open questions posed there
(Problems 1 & 7). In this introduction we shall also attempt to indicate (by
the name of a participant in bold face type) how these results connect to some
of the other problems discussed at the Workshop. Also, the reference list, al-
though far from exhaustive, is intended to provide a first point of contact with
the literature on this rich topic.

For theoretical purposes we shall consider only ODEs in the lowest possible
dimension of phase space to display the phenomena of interest. For the two
mechanisms presented here, this dimension is four. This restriction may appear
an over-simplification, but one can sometimes appeal to a so-called ‘homoclinic
center-manifold theorem’ [52, 53], that there exits an M -dimensional invariant
manifold along a homoclinic solution that is at least C1 and which contains
all recurrent dynamics in a neighborhood of the homoclinic orbit. Roughly
speaking, M is the dimension of the smallest possible phase space in which the
particular homoclinic solution may generically arise. Sometimes one can also
apply such reductions from infinite dimensions (e.g. [53, 42, 49]), and one of the
numerical examples below (§4.1) is an elliptic PDE system. We note also the
rigourous work by Afendikov and Mielke [2] on a reduction of bifurcations
in Poiseuille flow to the study of homoclinic orbits to saddle-foci in reversible
systems [2, 43] (actually due to additional symmetry the analysis of the ODEs
is similar to that in 3 below for the saddle centre case). Other than trivially, via
seeking steady states or travelling waves, we shall not deal here with reductions
from infinite to finite dimensions.

So, we consider parametrised, time-reversible four-dimensional systems of
ODEs

ẋ = f(x; α) x ∈ R4, α ∈ R (1)

where f is assumed to be sufficiently smooth. The (restrictive) definition of
reversibility we shall take is that the system is invariant under a reversal of
time and a linear transformation R that fixes half of phase space:

∃R, R2 = Id, S = fix(R) ∼= R2, Rf(x; α) = −f(Rx; α). (2)

Here S is termed the symmetric section of the reversibility and orbits of (1) that
intersect S are referred to as being symmetric under R. We shall also be inter-
ested in the case when (1) is Hamiltonian, that is, a co-ordinate transformation
exists to write the system as ẏ = J∇H(y), where J is the usual skew-symmetric
matrix in R4. Then the classical notion of reversibility corresponds to reversal
of time and the two momentum variables.

Many theorems concerning Hamiltonian systems have counterparts for re-
versible systems (see [16, 35]). For example, the spectrum of the linearisation
about a symmetric equilibrium is itself symmetric about the imaginary axis;
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and given pure imaginary eigenvalues, there is a reversible Liapunov Centre
Theorem giving manifolds composed of periodic orbits. Also, of relevance to
us here, symmetric homoclinic orbits to hyperbolic symmetric equilibria persist
under generic perturbation that preserves reversibility. Such a homoclinic orbit
Γ = {γ(t)|t ∈ R} to the origin 0 ∈ R4 is defined to be a solution of (1) satisfying

γ(t)→ x∗ as t→ ±∞, γ(0) ∈ S, where f(x∗) = 0, x∗ ∈ S.

In §3 we shall consider a case where 0 is non-hyperbolic.
Typically homoclinic orbits are of interest in applications for one of two rea-

sons, either as organising centres for complex dynamics or as intrinsic localised
solutions (such as solitary waves) in their own right. The prime motivation
in this work will be the latter. A recurring theme will how the existence of
a single, primary or ‘one-bump’ homoclinic orbit can imply the existence of
infinitely many others which are ‘multi-bumped’, that is their graphs resemble
several copies of the primary placed end to end. We shall also touch upon the
more general topic of multi-bump heteroclinic orbits.

In [9] the discussion of the different natures of the dynamics near symmet-
ric homoclinic orbits was tailored, for illustrative purposes only, to a class of
systems that can be written in the form of a fourth-order equation

u′′′′ − bu′′ + au = g(u, u′, u′′, u′′′). (3)

Here a and b are real parameters and g is a nonlinear function whose Taylor
series together with its first derivative vanishes at the origin. If the dependence
of g on u′ and u′′′ occurs as sums of even order products then, viewed as a
dynamical system in phase-space variables (u, u′, u′′, u′′′), (3) is reversible under
R : (u, u′, u′′, u′′′) 7→ (u,−u′, u′′,−u′′′). If g is odd in each of its arguments then
(3) also has odd symmetry and so will additionally be reversible under −R.
Finally, if g is a pure function of u, then (3) can be rewritten as a Hamiltonian
system with conserved first integral

H = u′u′′′ − b

2
u′2 − 1

2
u′′2 +

a

2
u2 −

∫ u

0

g(v) dv. (4)

Note that there are other choices g that lead to Hamiltonian systems (see, for
example, [32, eq. (2)]).

There are many physical motivations for (3) (see [9]). For example, with
g = u2 it arises as models for an elastic strut [22], and for steady water waves in
the presence of surface tension (both via a rigorous centre manifold reduction
of the full formulation as in the work of Buffoni and Toland [6], and via a
5th-order KdV equation model, e.g. [25, 45]). With g = −u3 and a < 0, (3)
describes steady states of the extended Fisher-Kolmogorov (EFK) equation

ut = −γuxxxx + βuxx + u− u3, γ > 0, (5)

which arises in pattern formation problems. Heteroclinic connections of (5)
between u = ±1 have received a lot of attention owing to their connection with
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Figure 1. Linearisation at the origin of the reversible system (3) with associ-
ated generic possibilities for multiplicities of homoclinic orbits.

phase transitions, as discussed by van Saarloos, Peletier, Troy, Kalies

and van der Vorst [14, 30, 29, 46, 47]. Note that upon identifying the two
non-trivial equilibria under the group action of odd symmetry, much of the
theory of homoclinic orbits goes through for the heteroclinic connections of
(5). Also, taking γ = 1, β = −2 and putting a general coefficient in front of
the u-term in (5) gives the 1D Swift-Hohenberg equation, also of importance
in pattern formation [55]. Adding an additional u2, gives a well-studied gen-
eralised Swift-Hohenberg equation, which has complex patterns of homoclinic
and heteroclinic orbits [20, 21]. The ODE used as a model in §2 below is the
steady state equation for such a PDE.

Figure 1 shows the four open parameter regions corresponding to qualita-
tively distinct linearisations at the origin of the reversible system (3), together
with their degenerate limits (local bifurcations). Also the figure indicates what
can be generically expected concerning homoclinic orbits to the origin within
each region. The reader is referred to [9] for more details.

In this paper, we shall focus on two kinds results obtainable by two kinds
of techniques: normal form, and Shil’nikov-type analyses. The former concerns
the limit as one of the curves Ci in Figure 1 is approached; see [26] for normal
forms valid in each limit. Typically, work has to be done to show the persistence
or otherwise of the small amplitude homoclinic solutions that are present in the
normal forms. For example, see the recent work by Lombardi [39, 38] on the
delicate question of persistence of homoclinic orbits just below C1. §2 below
concerns a degeneracy along C2.

In contrast, a Shil’nikov-type analysis applies in the large, away from these
small-amplitude limits, but presumes the existence of a ‘one-bump’ homoclinic
orbit which possesses certain non-degeneracy properties, usually a transverse

188



intersection between appropriate stable and unstable manifolds. The results are
then powerful, providing much information about the dynamics nearby in phase
and parameter spaces, including the possible existence of multi-bump versions
of the primary. Sometimes, these results can be put on a rigourous footing
using the so-called Lin-Sandstede [37, 52] method as in the work of Yew

[61] (see also the work of Cammassa et al. [8] for other recent generalisations
of Melnikov methods). However, for a particular example system, such as a
specific g in (3), to prove first the existence and then non-degeneracy of an
orbit in the first place is typically a non-trivial task.

The simplest form of existence proof is an explicit solution; e.g. in the work
of Mielke, Holmes & O’Reilly [44] an example Hamiltonian system was
shown to satisfy the hypotheses of Theorem 2 below, including transversality.
Sometimes, even when there is no explicit solution, transversality can be proved
by exploiting the special structure of the equation, as in the work of Toland

(see [5]) on (3) with g = u2 and a > 0. See also the work of Gardner & Jones

[19] and van den Berg [56, 57] on the EFK (5) equation for small γ/β and for
0 < γ < 1/8 respectively. Alternatively, analytical shooting methods can be
very powerful in showing the existence of one and multi-bump solutions without
needing to know about transversality, as in the work of Peletier & Troy

[46, 48, 47] on heteroclinic solutions of the EFK equation. It is interesting to
note the work of Buffoni [4] on a relation between the success of shooting
proofs and topological transversality.

If the system in question arises from the Euler-Lagrange equations of a vari-
ation principle, posed on the real line, then variational methods offer another
approach for obtaining existence of homoclinic or heteroclinic solutions as min-
imisers or saddle points, e.g. [13, 3]. Using such methods to find homoclinic
orbits to a saddle-focus for Hamiltonian systems with variational structure
Buffoni and Séré [7] derived a weaker condition than transversality, which is
easier to check, that must be satisfied by a one-bump homoclinic orbit in order
for multi-bumps to occur. Also using variational methods, for a class of equa-
tions including the EFK, Kalies and van der Vorst [30, 29] were able to
show not only the existence of complex multi-bump heteroclinic steady states,
but also their stability as solutions of the PDE. Finally, existence and stability
of multi-bump solutions can be studied using of geometric singular perturba-
tion theory and Evan’s function-type arguments as in the work of Gardner,
Kapitula, Kaper and co-workers [19, 31, 28]. Moreover, the Lin-Sandstede
method can give stability information for multi-bumps away from singular lim-
its [54]. None of any of these rigorous approaches to existence, transversality
and stability will not be addressed in what follows.

The rest of this paper, the main results of which can be found in more detail
elsewhere [58, 10, 23, 11], is outlined as follows. §2 and §3 shed light on two
open questions annunciated in [9, Problems 1 & 7]. The first of these concerns
a transition between so-called sub- and super-critical bifurcations along C2 and
the second concerns existence of multi-bump homoclinic orbits in the saddle-
centre region when no Hamiltonian structure is assumed. Finally, we end in §4
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with two numerical examples arising in engineering applications, that appear
to illustrate the preceding theory, although we offer no proof.

2. A heteroclinic connection to a periodic orbit

We wish to consider a degeneracy in the small amplitude bifurcation of homo-
clinic orbits from a reversible-Hopf bifurcation (the curve C2 in Figure 1, also
known as a Hamiltonian-Hopf or reversible 1 : 1 resonance). We suppose that
the bifurcation occurs upon crossing the curve C2 from right to left as the sin-
gle parameter α is increased. While our analysis will be quite general, we shall
base the discussion around a scaled version of (3) with competing nonlinearities

u′′′′ + (α + 2)u′′ + u = δu2 − βu3, δ, β > 0, (6)

which arises from the generalised Swift-Hohenberg equation mentioned above
and from an elastic rod on a destiffening/restabilising foundation [24].

The truncated normal form for the reversible-Hopf bifurcation in complex
form form is [27, 17]

Ȧ = iωA + B + iA P

(
|A|2, i

2
(AB̄ − ĀB); α

)
+ RA (7)

Ḃ = iωB + iB P

(
|A|2, i

2
(AB̄ − ĀB); α

)
+ (8)

A Q

(
|A|2, i

2
(AB̄ − ĀB); α

)
+ RB.

Here A, B ∈ C, P and Q are polynomials with real coefficients which to lowest
order take the form

P (x, y; α) = p1α + p2x + p3y, Q(x, y; α) = −q1α + q2x + q3y + q4x
2, (9)

and RA and RB are terms of higher order.
In order to resolve the bifurcation as α → 0, the coefficients of P are

unimportant, q3 plays a subservient role, and by assumption q1 > 0. It is
unnecessary to include q4 in the analysis unless q2 is small, but the degeneracy
q2 = 0 is precisely what interests us, and so we shall regard α and q2 as
independent small parameters. Dias & Iooss [17] consider the case q4 < 0,
motivated by interfacial water waves. Here, a calculation on (6) [58] shows that

q1 =
1
4
, q2 = −19

18
δ2 +

3
4
β, q4 =

12007
576

δ2β − 687295
46656

δ4 − 327
512

β2,

so that q2 = 0 at β = −38δ/27 at which value q4 > 0. Therefore we shall
henceforth assume q4 > 0.

In [27], the bifurcation on varying α is termed sub- or super-critical de-
pending on whether q2 is negative or positive. The subcritical case leads to the
small amplitude bifurcation of homoclinic orbits for α < 0, the supercritical
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case does not. To see what happens at the transition between the two, [17]
considered the extra q4 and p4 terms which upon assuming

q2 = ε, and A = O(
√

ε), B = O(ε
√

ε), t = O(
√

ε), µ = O(ε2),

for ε small implies the remainder terms RA and RB are uniformly of higher
order in ε.

The truncated normal form obtained from (7), (9) by setting RA, RB = 0,
is completely integrable with invariants

K =
i

2
(AB −AB), H = |B|2 −

∫ |A|2
0

Q(s, K; α) ds.

Using these, the system can be integrated to give(
dx

dt

)2

= 4x

(
H +

∫ |A|2
0

Q(s, K; α) ds

)
− 4K2 := 4f(x), (10)

where x = |A|2. This equation may be regarded as the zero total energy
conservation law of a particle of unit mass at position x acting under a potential
−4f(x). The function f is of the form

f(x; α, H, K) =
1
3
q4x

4 +
1
2
q2x

3 − (q1α− q3K)x2 + Hx−K2,

the shape of which for x > 0 completely determines the dynamics of the trun-
cated normal form.

Taking H = K = 0 (the origin is in the zero level set of both these integrals,
so must all homoclinic orbits to it be) we find that for parameter values inside
the shaded region of Figure 2 there is a maximum of f at x = 0 and another zero
of f for x > 0. Interpreting the particle motion inside such a negative potential,
this corresponds to a homoclinic orbit to the origin of (10). For the normal form
(7), (9), taking into account the phase angle of the complex variable A, we have
the subcritical (α < 0) bifurcation of a one-parameter family of small-amplitude
homoclinic solutions to a saddle focus at the origin. A calculation in [27]
shows that when remainder terms are included, thus breaking the completely
integrable structure of the normal form, two reversible homoclinic connections
persist. In fact, if we can prove that these two orbits are transverse, then
Devaney’s construction [15, 7] will additionally give infinitely many N -bump
orbits for each N and each small α, although none of them bifurcates from
α = 0. See also [60] for the asymptotics of the multi-bump solutions for small
α.

The homoclinic orbit of (10) ceases to exist for α < −(3/16)q2
2/(q1q4) at

which point the shape of f shows a heteroclinic connection between the origin
and non-trivial equilibrium of (10). The latter equilibrium corresponds to a
periodic orbit of (7), (9). When remainder terms RA and RB are added which
break integrability, such a heteroclinic connection is structurally unstable and

191



2
q

α

Figure 2. Summary of the information obtainable by studying graphs of f(x)
with H = K = 0 as q2 and α vary for q4 > 0. There is a homoclinic orbit to
the origin inside the shaded region which is bounded by the q2-axis and the
curve α = − 3q2

2
16q1q4

.

would lead generically to a pair of heteroclinic tangencies occuring at nearby
parameter values. Figure 3 shows how such an unfolding leads to a strange
bifurcation sequence of homoclinic orbits (intersections between Wu(0) and
S). This sequence has been computed numerically for (6) as shown in Figure
4, and corresponds to single curve of homoclinic orbits to the origin undergoing
a snaking curve, involving successive folds as the solution generates more and
more bumps (oscillations close to the periodic orbit). As b is decreased towards
the value at which q2 = 0, the oscillations in α decrease in amplitude. Figure 5
shows the distribution of limit points as α and q2 are varied. Note that, to
prove categorically for an example, such as (6), that the non-structural-stable
heteroclinic orbit of the normal form breaks up in the way just described would
require a careful Melnikov-type calculation.

For equation (6), the degenerate reversible-Hopf bifurcation occurs at β =
38δ2/27. For simplicity, suppose δ has been scaled to 1. Then for β a little less
that 38/27 we get the snaking bifurcation diagram as in Figure 4. However
for β = 0, it is known (at least numerically) that the primary branch born
in the reversible-Hopf bifurcation at α = 0 can be traced all the way back to
α = −∞, including passing through the ‘node focus transition’ of the origin
(corresponding to curve C3 in Figure 1) at α = −4 [5]. The transition that
must take place between these two b-values is partially summarised in Figure
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Figure 3. Illustrating the parameter unfolding of two successive heteroclinic
tangencies between a saddle-focus equilibrium O and a saddle-type periodic
orbit L for a four-dimensional reversible Hamiltonian system. The picture
is drawn schematically by taking a formal Poincaré section within the zero
level set of the Hamiltonian function, S is the symmetric section, and unstable
and stable manifolds are depicted respectively by solid and broken lines. The
sequence (a)–(f) occurs as α is increased. Each point at which Wu(0) intersects
S corresponds to a symmetric homoclinic orbit.

6. In fact the transition occurs at precisely β = 2/9, at which value there is a
non-trivial equilibrium at u = 3 that has exactly the same energy (value of the
Hamiltonian) as the origin. Therefore there is the possibility of heteroclinic
connections (kinks) between u = 0 and u = 3. See [56, 57] for analytical
results showing that such solutions do indeed exist. Numerically, we find that
a branch of the simplest such kinks account from the end of the snaking curve
as indicated in Figure 6. More details can be found in [58].

3. The saddle-centre parameter regime

Consider the equation (1) which we assume to be reversible in the sense of (2)
but not necessarily Hamiltonian. Suppose that 0 is a saddle-centre equilibrium,
and that for simplicity its linearisation is independent of the parameter α;
σ(Df(0)) = {±λ,±iω}, ω, λ > 0. Then we are free to choose co-ordinates such
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Figure 4. Continuation in α of the one-bump homoclinic orbit from the
reversible-Hopf bifurcation at α = 0 of (6) with δ = 1 and β = 0.29. The
ordinate of this and subsequence graphs is a scaling of the vector L2-norm of
the solution (u(x), u′(x), u′′(x), u′′′(x))

that linearization and reversibility take the form the form

Df(0) =


λ 0 0 0
0 −λ 0 0
0 0 0 −ω
0 0 ω 0

 , R =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (11)

Near the origin, we can further approximate the system up to remainder
terms, by a (2n + 1)-st order truncated normal form (for any n > 1)

ẋ =


x1 · P (x1x2, x

2
3 + x2

4; α)
−x2 · P (x1x2, x

2
3 + x2

4; α)
−x4 ·Q(x1x2, x

2
3 + x2

4; α)
x3 ·Q(x1x2, x

2
3 + x2

4; α),

 , (12)

which inherits the reversibility (11) of the original vector field. Here P and
Q are real n-th order polynomials with P (0, 0; α) = λ, Q(0, 0; α) = ω. Note
that (12) is completely integrable with integrals I1 := x1x2 and I2 := x2

3 + x2
4.

Owing to the reversible Liapunov Centre Theorem, (12) appears to capture the
necessary qualitative properties near the origin, but in order to state a rigorous
result, in [10] it was necessary to take the following restrictive assumption:

(H1) There is a C1-diffeomorphism that commutes with R and which, locally
near 0, conjugates the dynamics of (1) to that of the finite-order normal
form (12) for some n ≥ 1.
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(b)

W s(C)

S

l(α)

symm

x4

2x  =rΣs:

Figure 7. Illustrating the Poincaré maps Πloc and Πglob and the transversality
condition (H3). (a) Poincaré section Σs and, its image under R, Σu depicted
in a projection of the 4D phase space, (b) the assumed intersection between
the locus of the unstable manifold l(α) := Wu

glob(0; α) and W s(C) within Σu.
Ssymm is defined in the text later.

We want to consider homoclinic orbits to the origin. Given the lineari-
sation, the unstable manifold Wu(0) is one-dimensional. Therefore symmet-
ric homoclinic orbits, formed by an intersection between Wu(0) and the two-
dimensional S within R4, are of codimension-one. This codimension is irrespec-
tive of whether (1) is Hamiltonian or not. However, non-symmetric homoclinic
orbits (which must occur in symmetry-related pairs), which require the identi-
fication of a component of each of the one-dimensional Wu(0) and W s(0) are
of higher co-dimension (see results by Lerman and co-workers [36, 34] on an
unfolding of the codimension-two non-symmetric homoclinic orbits in Hamil-
tonian systems). Here we shall focus on symmetric homoclinic orbits, that is
we assume

(H2) At α = 0 there exists a symmetric homoclinic orbit x(t) = γ(t) to the origin
of (1), that is γ → 0 as t→ ±∞ and γ(0) ∈ S.

The final condition is a non-degeneracy hypothesis that concerns the split-
ting of the stable and unstable manifolds as the parameter α is varied, see
Figure 7. This condition makes use of the three-dimensional stable and unsta-
ble manifolds, W s,u(C) say, of the 2D centre manifold C := W c(0) composed of
periodic orbits in a neighbourhood of the origin. Let Σs be an α-independent
Poincaré section that for α = 0 contains a point, γ(t∗) for some t∗ > 0 suf-
ficiently large, on the primary homoclinic orbit in W s

loc(0). Furthermore let
l(α) = Wu

glob(0; α) ∩ Σs, such that l(0) = γ(t∗), then our non-degeneracy hy-
pothesis is
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α i α i+3 0 α

Figure 8. Illustrating the result of Theorem 1

(H3) The vector v := d
dα l(α) at α = 0 intersects W s(C) ∩ Σs transversally.

Under the above conditions we have the following bifurcation theorem for
2-bump homoclinic orbits, illustrated in Figure 8.

Theorem 1 ([10]) Assume (H1)–(H3). Then there is a sequence {αi : i =
1, 2, . . .} converging to 0 either from either the left or the right such that at
parameter values α = αi there is a reversible 2-bump homoclinic orbit to 0.
Moreover,

αi+1

αi
→ e−2λπ/ω as i→∞ (i.e. as α→ 0). (13)

If, in addition, the system (1) is Hamiltonian then we are in the situation
first analysed by Mielke et al. [44] (see also related work by Raggazzo

[50, 51]). First note that there is a change of variables to write the system in
classical Hamiltonian co-ordinates q = (q1, q2), p = (p1, p2) with H and the
reversibility satisfying

H(q, p) =
ω

2
(p2

1 + q2
1) + s

λ

2
(p2

2− q2
2) + G(q, p; α), R : (q, p)→ (q,−p) (14)

Here G is O((p2 + q2)3/2) and s = ±1. One might think that the sign of s
is irrelevant in determining the qualitative dynamics, because one can make
the canonical transformation that interchanges q2 and p2 and reverses the sign
of all variables. However, such a system would no longer satisfy the same
reversibility condition. (Equally well, we could have chosen s = 1 but then the
property of importance would have been the action of the reversibility).

For analytic Hamiltonian systems, we can now remove the hypothesis (H1)
since results due to Moser and Rüssmann, see [44, Section 2.1], show that the
dynamics near the origin is always conjugate to a finite-order normal form (12)
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(where P and Q are now defined in terms of partial derivatives of some Hamil-
tonian function). It will also turn out that Hamiltonian systems automatically
fail the transversality assumption (H3) (see Figure 11 below). Instead, using
the Hamiltonian structure, one can reduce the flow near γ to that of a planar
map, see [44] for the details. Non-degeneracy hypotheses are then written on
this map.

(H4) At α = 0, the global map Πglob from Σu → Σs written in symmetrically
defined co-ordinates, is not a rigid rotation. Moreover, the splitting between
the stable and unstable manifolds in this map depends linearly on α.

Loosely speaking, these conditions check that the system at α = 0 is not
completely integrable and that α is a ‘good’ parameter. Under these hypotheses
we can state the following theorem, see Figure 9.

Theorem 2 ([44]) Given (H2) and (H4) then

– If s > 0, there exist sequences of parameter values {α2,+
i ; i = 1, 2, . . .}

and {α2,−
i ; i = 1, 2, . . .} at which the Hamiltonian system has a two-bump

homoclinic orbit. The two parameter sequences converge on α = 0 from
different sides, satisfying

α2,−
1 < α2,−

2 < . . . < 0 < . . . < α2,+
2 < α2,+

1

and
α2,−

i+1

α2,−
i

→ e−λπ/ω as i→∞ (i.e. as α→ 0), (15)

and similarly for α2,+
i .

– Moreover, if s > 0 then for any N > 2, any neighbourhood of α = 0 contains
infinitely many parameter values at which there exist N -bump homoclinic
orbits.

– Furthermore, if s > 0 then for an interval of α values containing α = 0,
there is Smale horseshoe dynamics in a neighbourhood of γ(t) in the flow of
the Hamiltonian system restricted to level sets H = h for sufficiently small
h > 0.

– If s < 0, then the unstable manifold of 0 eventually leaves a small tubular
neighbourhood U of γ(t) for all sufficiently small α 6= 0.

Note the distinction with the non-Hamiltonian case, there is a sign condition
s to check, but if this is satisfied we get cascades of two-bump for both signs of
α.

Remarks:

1. In both the Hamiltonian and non-Hamiltonian cases, the results can be
extended to show sequences of N -bumps for all N > 2. See [44] for details
in the Hamiltonian case.
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Figure 9. Illustrating the result of Theorem 2

2. Unlike in the Hamiltonian reversible case (Theorem 2), it is not easy in the
general reversible case (Theorem 1) to make statements about the existence
of Smale horseshoes in a neighbourhood of the unperturbed homoclinic
orbit, because we cannot reduce the dynamics to a 2D map. It remains an
open problem to decide whether chaotic dynamics necessarily occur.

3. Consider a two-parameter reversible system ẋ = f(x, α, β) which contains a
one-parameter family of Hamiltonian systems (for β = 0). Then, given the
appropriate non-degeneracy assumptions [10, Thm. 2], there are infinitely
many curves βi = βi(α), i = 1, 2, . . . that correspond to 2-bump homoclinic
orbits. Two cases can be distinguished (compare Figures 10(a) and (b))
corresponding to the sign of s for the Hamiltonian system at β = 0.

4. Finally, suppose that system (1) has odd symmetry, i.e. f(x, α) = f(−x, α).
Then (1) is reversible under −R also, which implies for non-Hamiltonian
systems that there are two sequences of parameter values α2,−

1 < α2,−
2 <

. . . < 0 < . . . < α2,+
2 < α2,+

1 at which 2-bump homoclinic orbits exist. One
sequence corresponds to R-reversible orbits, the other to −R-reversible.
Given Hamiltonian structure, then sequences α2,−

i and α2,+
2 both correspond

to S-reversible 2-bumps where S = R or −R depending on the sign of s.

To end this section, let us briefly motivate the geometrical Shil’nikov-type
construction behind the above Theorems and Remarks.

Suppose for the time being that (H1)–(H3) hold. Poincaré maps are con-
structed as in Figure 7(a). In the co-ordinates of (12) we take

Σu := {x1 = r; x2
2 + x2

3 + x2
4 < δ2},

Σs = R(Σu) := {x2 = r; x2
1 + x2

3 + x2
4 < δ2}
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α α

(a) (b)β β

Figure 10. Two-parameter unfolding of 2-bump homoclinic orbits (dashed
lines) in a neighbourhood of a primary homoclinic which occurs for α = 0. The
parameter β is a generic Hamiltonian-breaking parameter. Cases (a) and (b)
correspond respectively to s < 0 and s > 0 for the Hamiltonian system at β = 0.
The additional solid straight line corresponds to parameter values α = αh(β)
at which heteroclinic orbits exist from the origin to a small amplitude periodic
orbit in W c.

where r > 0 and δ are small. The local Poincaré map Πloc : Σs −→ Σu,
(xs

1, x
s
3, x

s
4) 7−→ (xu

2 , xu
3 , xu

4 ), is induced by the flow of the normal form (12).
The global map Πα

glob : Σu −→ Σs is constructed using the global flow close the
homoclinic orbit γ. By hypothesis it satisfies Π0

glob : (0, 0, 0) ∈ Σu 7→ (0, 0, 0) ∈
Σs, and Π−1

glob(Rx) = RΠglob(x).
We next want to characterize 2-bump homoclinic solutions in terms of these

two Poincaré return maps. It is not difficult to see that a condition for a
symmetric 2-bump homoclinic orbit to occur at parameter value ᾱ is

Πloc ◦Πᾱ
glob(0, 0, 0) = R ◦Πᾱ

glob(0, 0, 0). (16)

This condition can also be written in the form Πglob(0, 0, 0) ∈ Ssymm, where

Ssymm := {(xs
1, x

s
3, x

s
4) ∈ Σs; Πloc(xs

1, x
s
3, x

s
4) = R(xs

1, x
s
3, x

s
4)}. (17)

By switching to polar co-ordinates x3 = % cosϕ, x4 = % sinϕ, we can get
an accurate description of Ssymm as follows. In these coordinates the final two
normal form equations read

%̇ = 0, ϕ̇ = Q(I1, I2).

The first two equations of (12), in the ‘hyperbolic’ directions, can then be used
to calculate the time of flight in going from Σs to Σu; τ = (1/P (I1, I2)) ln(r/xs

1).
Hence we obtain an expression for Πloc in terms of % and ϕ:

xu
2 = xs

1, %u = %s, ϕu = ϕs +
Q(I1, I2)
P (I1, I2)

ln
(

r

xs
1

)
.
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A simple calculation shows that the reversing symmetry R given by (11)
leaves % fixed and acts on the ϕ-coordinate as Rϕ = π

2 − ϕ. Using this, one
gets

Ssymm =
{
(xs

1, %
s, ϕs) ∈ Σs ; xs

1 > 0,
π

2
− ϕs ≡ (18)

ϕs +
Q(I1, I2; α)
P (I1, I2; α)

ln(r/xs
1) (mod 2π)

}
,

which is the equation of a ‘double screw’ that winds infinitely many times
around the x1 axis as x1 → 0, see Figure 7(b). The condition xs

1 > 0 is
necessary, because orbits with xs

1 < 0 leave a neighborhood of 0 not along the
other branch of the unstable manifold and do not lie in a tubular neighborhood
of the primary homoclinic orbit. It is easy to verify that the closure of Ssymm

consists of Ssymm ∪ {xs
1 = 0}, and moreover, within the local co-ordinates of

Σs, {xs
1 = 0} is W s(C) the stable manifold mentioned in (H3).

To find 2-bump orbits, consider now l(α) := Πα
glob(0, 0, 0) which is the locus

with α of the point of intersection between the unstable manifold and Σs. The
non-degeneracy condition (H3) then implies that l(α) intersects the base of
Ssymm transversally and so cannot avoid intersecting Ssymm infinitely many
times, see Figure 7(b). Each such intersection point is a 2-bump homoclinic
orbit.

To see why assumption (H3) fails for Hamiltonian systems, we first note
that in the co-ordinates of (12) the Hamiltonian (14) must take the form H =
2λx1x2− s(ω/2)(x2

3 + x2
4)+ h.o.t. So that

{H = 0}∩Σs := {(x1, % cosϕ, % sinϕ) ∈ Σs|2λrx1+O((rx1)2) = s
ω

2
%2+O(%4)},

which to lowest order is the equation for a paraboloid tangent to the plane
{x1 = 0} at the origin in Σs, lying locally entirely in the half-space sx1 ≥ 0.
Since the unstable manifold is constrained to lie in {H = 0}, Πα

glob(0, 0, 0) has
to lie tangent to the plane {x1 = 0}, see Figure 11. Moreover, this shows that
l(α) lies on the same side of {xs

1 = 0} for all |α| small. Thus we conclude that
one of the two pictures Figure 11(a) or (b) applies according to the sign of
s. Recalling the implication of intersections between l(α) and {xs

1 = 0}, this
explains Theorem 2; if s = +1 we get cascades of 2-bumps as in Figure 9 and
if s = −1 we get none.

Now suppose we perturb the Hamiltonian structure as in Remark 3 above.
Then it is not difficult to see that a generic unfolding of the intersection between
l(α) and W s(C) will lead to one of the bifurcation diagrams in Figure 10
depending on the sign of s. The heteroclinic connection between the origin and
a periodic orbit occurs when l(α) intersects W s(C) other than at the origin.

Remark 4 follows from noticing that the fixed point set of the reversibility
−R is

S−symm := {(xs
1, x

s
3, x

s
4) ∈ Σs; Πloc(xs

1, x
s
3, x

s
4) = −R(xs

1, x
s
3, x

s
4)} = −Ssymm.

201



S symmS symm

x

ρ
ϕ1

Σ s(α)H
0

U

(α)l

Σ s

(a) (b)

(α)l

(α)H
0

U

Figure 11. Showing intersections between Ssymm and l(α) for the Hamiltonian
case with (a) s < 0, and (b) s > 0. Depicted similarly to Figure 7(b)

Therefore, for the sign of α for which l(α) does not intersect Ssymm there will
be infinitely many intersections between l(α) and −Ssymm. These intersections
correspond to −R-reversible 2-bump homoclinic orbits.

Finally, let us see how the scalings (13) and (15) arise. Let αi be the α-value
of the ith intersection point with Ssymm along l(α) (counting furthest from 0
first) and let (xl

1, %
l, ϕl) be the corresponding point in l(α). Then we have

Q(rxl
1(αi), %l(αi)2; αi)

2P (rxl
1(αi), %l(αi)2; αi)

ln(r/xl
1(αi)) = −ϕl(αi) +

π

4
+ (n0 + i)π +O(α)

for some integer n0. For αi sufficiently small (i sufficiently large) this gives

xl
1(αi) = Kr exp

(
−2(n0 + i)πλ

ω
+O(αi)

)
(19)

where K = exp[ λ
ω (ϕl(0)− π

4 )].
Now, for general reversible systems satisfying hypothesis (H3) we have

xl
1(αi) = aαi +O(α2

i ), (20)
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for some a 6= 0. Substituting (20) into (19) for i = n and i = n + 1, and
dividing, we obtain (13)

In the case of a Hamiltonian reversible system, generically we have

xl
1(αi) = bα2

i +O(α3
i ),

for some nonzero b, which when substituted into (19) leads to the scaling (15)
for Hamiltonian reversible systems.

4. Two numerical examples

In this section we describe two examples arising from engineering applications,
respectively in elasticity theory and nonlinear optics. The numerical methods
used for homoclinic orbits in reversible systems are described in detail else-
where [12] and are based on two-point boundary value methods with left-hand
boundary conditions in an approximation to the unstable manifold and right-
hand conditions in S. All continuation is performed using the software auto

[18].

4.1. Example 1: Spatially localised buckling of cylindrical shells
We mention here some results found in [23] on the buckling of a cylindrical shell.
The results are highly suggestive that a mechanism similar to that described in
§2 is going on. We do not provide the technical details of either the computation
(see [40, 41]) or the theoretical results enabling one to regard elliptic equations
on infinite domains as reversible dynamical systems, (see e.g. [42, 49]).

A classical model for the equilibrium of an (infinitely) long, thin cylindrical
shell of radius R and thickness t is the von Kármán–Donnell system of nonlinear
elliptic equations

κ2∇4w + λwxx − ρφxx = wxxφyy + wyyφxx − 2wxyφxy, (21)

∇4φ + ρwxx = (wxy)2 − wxxwyy. (22)

Here x ∈ R is the axial and y ∈ 2πR the circumferential co-ordinate, w is
the radial displacement measured from a non-trivial (fundamental) unbuckled
state, and φ is a stress function. Parameters appearing are the curvature
ρ = 1/R, the geometric constant, κ2 = t2/12(1−ν2) where ν is Poisson’s ratio,
and the bifurcation parameter, λ = P/Et, where P is the compressive axial
load applied per unit length and E is Young’s modulus.

We discretise the von Kármán–Donnell equations (21) and (22) in such a
way as to exploit the natural symmetries in the problem. Experimentally a
well defined number, s, of waves is observed circumferentially in the buckled
deformation, corresponding to an invariance under rotation of 2π/s. Hence we
write

w(x, y) =
∞∑

m=0

am(x) cos(msρy); φ(x, y) =
∞∑

m=0

bm(x) cos(msρy), s ∈ IN
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Figure 12. The path of cross-symmetric localised buckling solutions of (21),
(22) for s = 11 and M = 6, plotting the loading parameter λ against a measure
of end shortening.

and refer to cos(sρy) as the seed mode. Substituting into the von Kármán–
Donnell equations and taking the L2 inner product with cos(msρy) we obtain a
system of non-linear ODEs for the Fourier modes am and bm for m = 0, . . . ,∞.
A Galerkin approximation may then be formed by taking m = 0, . . . , M −1 for
some finite M giving a system of 8M first-order ordinary differential equations.

Furthermore, the observed patterns tend to be either symmetric or, more
frequently, cross-symmetric. A solution to the von Kármán–Donnell equations
that is cross-symmetric about a section at x = T satisfies for some seed s

w(x, y) = w(2T −x, y + πR/s) & φ(x, y) = φ(2T − x, y + πR/s). (23)

It is not difficult to see that this defines a reversibility if we think of co-ordinate
(x− T ) as time-like.

Figure 12 shows the computation of a particular cross-symmetric localised
buckling solution (homoclinic in x) with s = 11, as the parameter λ is varied
and the other parameters held constant at R = 100mm, t = 0.247mm, ν = 0.3,
and E = 5.56GPa [59].

The fluctuating nature of the post-buckling curve signifies sequential lo-
calized buckling in qualitatively the same manner as in Figure 4. The start
of the curve can be identified with a reversible-Hopf bifurcation, and initially
the homoclinic solution has the single diamond pattern shown in Figure 13(a).
Physically we can interpret the solution as restabilising at the first minimum
post-buckling load, whereupon under increasing load it then meets a second
instability at a maximum limit point, signifying a second localized buckle con-
catenating with the first. The process continues to include any number of cells,
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(a) (b)

Figure 13. Deflection w(x, y) reconstructed from the numerical solutions on
the localised buckling path at λ = 4.0× 10−4; (a) near first minimum, (b) near
third minimum. After each pass though a maximum the solution picks up an
additional row of cells.

four being shown in Figure 13(c). The endpoint of this curve — a homoclinic
connection to a periodic orbit — was associated in [23] with the predictive
Maxwell effective failure load, defined as being where the unbuckled state and
a fundamental periodic buckling mode have the same energy. See [24] for more
insights into this Maxwell load concept.

4.2. Example 2: A generalised massive Thirring model with dispersion
In [10], the theory of §3 was found to have good agreement with numerical
experiments on equation (3) with g = u3 + 3

4u(uu′′+ (1 + η)u′2). When η = 0,
this system is Hamiltonian and arises as a continuum limit of a discrete lattice
model, for which homoclinic orbits to the origin represent breather solutions
[33]. Here we shall describe another possible application of the theory.

In [11, 10] homoclinic solutions to the origin of the complex differential
equation

DU ′′ + iU ′ + ΩU + U |U |2 + U = iβ(U |U |2)′, U ∈ C, (24)

are studied as a model for spatially localised oscillations of an optical general-
isation of the massive Thirring model in the presence of dispersion both linear
(with coefficient D) and nonlinear (with coefficient β). The associated time-
dependent equation without dispersion was proposed in [1] as a model for an
optical fibre with grating. The same equations, with different interpretations
of t and x, also describe stationary tunnel-coupled planar nonlinear waveguides
with misaligned optical axis.
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Figure 14. A two-parameter bifurcation diagram in the (D, Ω)-plane of
1-bump homoclinic orbits (solid curves) and a small sample of two-bump ho-
moclinic orbits bound states (dashed curves) of (24) for β = 0.

When β = 0, the system (24) may be written in Hamiltonian form with

H = D|U ′|2 + Ω|U |2 + |U |4 +
1
2
(U2 + U

2
). (25)

Viewing equation (24) in the 4D phase space (Re U(x), Re U ′(x), Im U(x),
ImU ′(x)), it has odd symmetry and is reversible under R : (U, U ′)→ (U,−U

′
)

and −R. The addition of β 6= 0 breaks the Hamiltonian structure, but not
reversibility.

Linearisation about the origin, reveals that it is a saddle-centre for |Ω| < 1.
Figure 14 depicts curves of one-bump and two-bump orbits in the (D, Ω)-plane
for the Hamiltonian system. All solutions found are −R-symmetric. That
the 2-bumps should share the same reversibility as the primaries agrees with
Theorem 2, since a change of co-ordinates in (25) shows that s > 0.

Solutions on each of the three branches of one-bumps are qualitatively sim-
ilar to that in Figure 15(a). Note that the amplitude of the solutions along the
primary branch tends to zero as Ω → 1− at which point the real eigenvalue
λ → 0. Note that there only appear to be three branches that bifurcate from
Ω = 1, the behaviour for D > 1/2 being the accumulation of two-bumps on
the singular limit. The curves of two-bumps shown in Figure 14 are merely
indicative of a greater family; in particular they do not represent consecutive
solutions in the cascades accumulating on the three one-bump orbits. Graphs
of the two-bumps are qualitatively similar to those in Figure 15(b).

Now let us consider the effect of taking non-zero β. For simplicity we take
Ω = 0. Our starting point is a −R symmetric one-bump homoclinic solution
on branch 1 in Figure 14, which was found in [11] to occur for β = Ω = 0 at the
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Figure 15. Homoclinic orbits of the system (24) at Ω = 0 and β = 0.1. (a)
primary orbit (−R-symmetric) for D = 1.355173, (b) −R symmetric two-bump
for D = 1.355187, (c) R-symmetric two-bump for D = 1.355172, and (d)
R-symmetric two-bump for D = 1.354095.

exact value D =
√

3/2. A continuous branch of such solutions can be traced
numerically in the (D, β)-plane, passing through (D, β) = (1.355173, 0.1). Fig-
ure 15 presents, for β = 0.1, this primary orbit and some two-bump orbits,
both −R and R-symmetric, for nearby D-values. In [10, Table 3,4] quantita-
tive numerical evidence is presented that the scaling rates (13) and (15) are
obeyed by the accumulation of 2-bumps for β = 0.1 and β = 0 respectively.

Figure 16 presents the results of 2-parameter continuation of this primary
and its corresponding 2-bumps. Note that the curves agree qualitatively with
the theoretical result embodied in Figure 10. Specifically, the −R-symmetric
2-bumps agree with Figure 16(b) and the R-symmetric ones with Figure 16(a),
apart from the caveat that the side of the primary orbit from which the 2-bump
orbits accumulate does not appear to switch as β changes sign. Presumably
this is because (24) does not satisfy the nondegeneracy condition hinted at in
Remark 3 above, although we leave such a calculation to future work.

Finally, let us turn to the original motivation in [11, 10] for studying system
(24) which was to see the effect of linear dispersion D (and nonlinear dispersion
β) on the existence of soliton-like homoclinic solutions along the Ω axis for
−1 < Ω < 1. The numerical results show that there is a finite dispersion gap
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Figure 16. Continuation in the (D, β)-plane of the primary and (a)
−R-reversible, (b) R-reversible two-bump homoclinic orbits to the origin of
(24) with Ω = 0. Solid lines represent primary solutions and dashed lines
2-bumps.

(between D = 0 and the branch labeled 3 in Figure 14), and so the original
‘solitons’ are structurally unstable to dispersion. Inside this gap, in place of
one-bump homoclinic orbits, we find infinite sequences of N -bump homoclinic
orbits for N > 2.
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